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Conclusion

We implemented a lightweight MapReduce 
framework using C++ and demonstrated several 
machine learning algorithms (e.g. naïve bayes, 
logistic regression etc.) on top of it, which shows 
the feasibility of large-scale parallel machine 
learning algorithms.

MapReduce is a framework where users specify a 
map function to generate a set of intermediate 
key/value pairs from input, and a reduce function to 
merge all intermediate values with the same key. 

The framework will take care of the details such as 
partitioning the input data, scheduling and 
distributing tasks. This idea enables programmers 
without any experience with parallel systems to 
write highly scalable programs.

Many real-world problems can be expressed in this 
model, like word counting, reverse-weblink graph, 
machine learning algorithms.

Our framework is based on distributed file system 
(e.g. AFS). The executing setup is just a cluster 
configuration file and a single binary executable.

The master is executed by the user and then it will 
ssh to other machines to bring up all the workers. 
The worker can turn into a mapper or reducer 
dynamically. After each stage there is a barrier for 
all the workers and only then the master will 
trigger the next stage.

The MapReduce Version of K-Means

Mappers:
Get the centroids from last iteration and read the 
input data. Calculate the Euclidean distance to each 
centroid and associate each instance with the closest 
centroid, and outputs (data instance id, cluster id).

Reducers:
Calculate the average of the instances of each 
cluster, and output (cluster id, cluster centroid).

#include "../src/mapreduce.h"

#include "../src/ml/kmeans.h"

using namespace lmr;

using namespace std;

int main(int argc, char **argv)

{

MapReduceSpecification spec;

MapReduceResult result;

spec.config_file = "config.txt";

spec.index = (argc == 2) ? atoi(argv[1]) : 0;

spec.num_mappers = 10;

spec.num_reducers = 10;

MapReduce mr(&spec);

ml::kmeans km(&mr);

// 10 inputs, threshold is 0.1, maximum 20 iterations

km.train("input_%d", 10, "centroids", 0.1, 20, result);

km.predict("input_%d", 10, "result_%d", result);

// print prediction time cost.

printf("%.3fs elapsed.\n", result.timeelapsed);

return 0;

}

Sample code for K-Means:

Time vs. # of mappers:

Speedup vs. # of inputs: (optimally 8x speedup)

Time vs. # of mappers per node:
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Features:

• Scalability: Easily implemented on multi-node 
system, and the scalability of the application is 
ideal when the problem size is large enough.

• Dynamic Scheduling: Supports dynamic scheduling 
for mappers and reducers. Can improve the work-
load balance of the system.

• Connection Reuse: Connections between master 
and workers are reused in different rounds of 
MapReduce to avoid starting overhead.

Issues:

• Starting Overhead: For applications with few 
iterations, the overhead of workers assignment 
would overweigh the benefit of more workers.

• Critical Section: Master needs a mutex to protect 
the job queue, which must be done sequentially 
and may limit the scalability.


