
Introduction

Lightweight MapReduce Framework
Zihao He, Shiming Zhuang

15618 final project

Summary Methodology Results Results

Conclusion

We implemented a lightweight MapReduce
framework using C++ and demonstrated several
machine learning algorithms (e.g. naïve bayes,
logistic regression etc.) on top of it, which shows
the feasibility of large-scale parallel machine
learning algorithms.

MapReduce is a framework where users specify a
map function to generate a set of intermediate
key/value pairs from input, and a reduce function to
merge all intermediate values with the same key.

The framework will take care of the details such as
partitioning the input data, scheduling and
distributing tasks. This idea enables programmers
without any experience with parallel systems to
write highly scalable programs.

Many real-world problems can be expressed in this
model, like word counting, reverse-weblink graph,
machine learning algorithms.

Our framework is based on distributed file system
(e.g. AFS). The executing setup is just a cluster
configuration file and a single binary executable.

The master is executed by the user and then it will
ssh to other machines to bring up all the workers.
The worker can turn into a mapper or reducer
dynamically. After each stage there is a barrier for
all the workers and only then the master will
trigger the next stage.

The MapReduce Version of K-Means

Mappers:
Get the centroids from last iteration and read the
input data. Calculate the Euclidean distance to each
centroid and associate each instance with the closest
centroid, and outputs (data instance id, cluster id).

Reducers:
Calculate the average of the instances of each
cluster, and output (cluster id, cluster centroid).

#include "../src/mapreduce.h"

#include "../src/ml/kmeans.h"

using namespace lmr;

using namespace std;

int main(int argc, char **argv)

{

MapReduceSpecification spec;

MapReduceResult result;

spec.config_file = "config.txt";

spec.index = (argc == 2) ? atoi(argv[1]) : 0;

spec.num_mappers = 10;

spec.num_reducers = 10;

MapReduce mr(&spec);

ml::kmeans km(&mr);

// 10 inputs, threshold is 0.1, maximum 20 iterations

km.train("input_%d", 10, "centroids", 0.1, 20, result);

km.predict("input_%d", 10, "result_%d", result);

// print prediction time cost.

printf("%.3fs elapsed.\n", result.timeelapsed);

return 0;

}

Sample code for K-Means:

Time vs. # of mappers:

Speedup vs. # of inputs: (optimally 8x speedup)

Time vs. # of mappers per node:

Reference

[1] J. Dean and S. Ghemawat, MapReduce: Simplied Data Processing on Large Clusters.
Communications of the ACM, 2008.
[2] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng and K. Olukotun. Map-reduce for
machine learning on multicore. Proceedings of the 19th International Conference on
Neural Information Processing Systems, 2006.
[3] M. Bodoia. MapReduce Algorithms for k-means Clustering. CME 323: Distributed
Algorithms and Optimization, Stanford. 2016.
[4] W. Cohen. Naive Bayes and Map-Reduce. 2017.

Features:

• Scalability: Easily implemented on multi-node
system, and the scalability of the application is
ideal when the problem size is large enough.

• Dynamic Scheduling: Supports dynamic scheduling
for mappers and reducers. Can improve the work-
load balance of the system.

• Connection Reuse: Connections between master
and workers are reused in different rounds of
MapReduce to avoid starting overhead.

Issues:

• Starting Overhead: For applications with few
iterations, the overhead of workers assignment
would overweigh the benefit of more workers.

• Critical Section: Master needs a mutex to protect
the job queue, which must be done sequentially
and may limit the scalability.

