
Lightweight MapReduce Framework

Zihao He (zihaohe), Shiming Zhuang(szhuang)

December 16, 2018

1 Summary

We implemented a lightweight MapReduce framework using C++, and demonstrated several

machine learning algorithms (e.g. näıve bayes, logistic regression etc.) on top of it, which

shows the feasibility of large scale parallel machine learning algorithms.

2 Background

Figure 1: MapReduce framework overview. Image credit: Dean, Ghemawat

As big companies are collecting more and more data (e.g. logging info, clicking data,

social network info etc.) from users, they are facing a tough problem of dealing with a large

amount of data. The processing and analyzing tasks require huge computation power from

hundreds or even thousands of computers. Many of the problems are pretty straightforward

such as word counting, näıve bayes classification etc., and the intrinsic difficulty instead

1

becomes how to distribute and parallelize the workload efficiently. To focus on the business

logic itself instead of the general parallelism problem, Jeffreay Dean etc. proposed a pro-

gramming model named MapReduce[1], where users specify a map function to generate a

set of intermediate key/value pairs, and a reduce function to merge all intermediate values

with the same key (see diagram above). It turns out that many real world problems can be

expressed in this model. And this idea enables great convenience for programmers without

any experience with parallel systems to write highly scalable programs.

Our 15618 project is to implement such a MapReduce framework that will take care of

the details of partitioning the input data, scheduling and distributing tasks and so on. It

is lightweight because it does not handle unexpected situations such as machine failures,

network interruptions or hard drive problems etc, and it will take advantage of existing

distributed file system (e.g. AFS) for sharing partial results. The framework will support

dynamic work distribution by assigning one master which saves the task states and controlling

the rest workers.

Furthermore, it is more useful to test it with some real life problems and examine the

speedup under different settings (e.g. with how many machines and how much workload on

each machine etc.). To start with, we implemented word counter as a ”hello world” version

of MapReduce task where multiple workers collaborate to find out how many times a word

appears in the document. For näıve bayes, two rounds of MapReduce for training and another

two rounds for predicting are involved. And for kmeans, number of rounds is based on a

threshold which further requires consensus among all the workers. Many of these algorithms

demand different numbers of Mappers and Reducers in different rounds, which also requires

the master dynamically distribute the workload. The details of the framework as well as the

implementation of each machine learning algorithms are described in the following section.

3 Approach

3.1 Workflow

The main workflow is as above in Figure 2. The master is executed by the user and then

it will ssh to other machines to bring up all the workers specified in a configuration file by

the user. Note that the program is in a single binary file which has the ability to turn into

a master as well as a worker. What it will be is determined by the argument passed to it at

the beginning. The task may be splitted into multiple stages and requires several rounds of

Maps and Reduces (e.g. KMeans has a threshold to stop the iteration, Näıve Bayes has two

stages for training, etc.), and the scheduling is solely controlled by the master node. After

each stages there is a barrier for all the workers and only then the master will trigger the

next stage.

After all the workers have checked in with the master at the beginning, stage 1 starts.

At each stage the master would assign each worker to be a mapper or reducer. A mapper

2

Figure 2: Work flow of a task

will be assigned an input file by the master and notify the master when it is done and get

its next input. The output of mappers are called temporary files or partial results which

will be used by reducers as input and be deleted after this stage. After all the mappers are

done, reducers are assigned to work on the partial results and output the final result of this

stage in the end. The stage finishes after all the reducers are done, and then the next stage

starts until the end.

The worker is able to turn into a mapper or reducer dynamically, which is beneficial for

the whole speedup. Because in some cases the mapper side has much more work to do and it

would be helpful to assign more mappers than reducers. Note that a single machine can run

multiple workers at the same time, so the MapReduce framework takes advantage of both

multi-process parallelism and distributed system.

3.2 Network Communication

We designed our own network communication utility upon TCP using libevent library instead

of using OpenMPI for more flexibility. It also bears some features from OpenMPI.

• It is asynchronous based on messages. Handlers are assigned for incoming packets.

• Unexpected network or worker failure would cause task failure because we want to

ensure integrity of the final result.

• Communication endpoints are identified by indices in the configuration file.

We designed our own packet header as in Figure 3. msg type includes LMR CHECKIN,

LMR ASSIGN MAPPER, LMR MAPPER DONE etc. for assigning handlers more conve-

niently. For example, upon receiving LMR CHECKIN the master will increase the counter

3

Figure 3: Packet header

and check whether all workers have checked in. Upon receiving LMR ASSIGN MAPPER

the mapper will start working on the input specified in the data field.

In the message handler, it will spawn a new thread to do the work as it may take a

long time and block later messages. When encountering unexpected worker failure, the TCP

connection with the master is down which will cause the master to shut down the whole

task.

3.3 MapReduce Version of Machine Learning Algorithms

We adapted several machine learning algorithms from [2,3,4] to our framework as built-in

functions. An example code of KMeans clustering is as follows.

A specification is created for a MapReduce instance, and then the machine learning class

takes the instance as input for low-level excecution setting. Just call train and predict and it

will parallelize the process automatically. Execution details are stored in result for analyzing.

MapReduceSpeci f icat ion spec ;

MapReduceResult r e s u l t ;

spec . c o n f i g f i l e = "config.txt" ;

spec . index = (argc == 2) ? a t o i (argv [1]) : 0 ;

spec . num mappers = 10 ;

spec . num reducers = 10 ;

MapReduce mr(&spec) ;

ml : : kmeans km(&mr) ;

// 10 inputs, iteration threshold is 0.1, maximum 20 iterations

km. t r a i n ("kmeans/input_%d.txt" , 10 , "kmeans/centroids.txt" , 0 . 1 , 20 , r e s u l t) ;

km. p r ed i c t ("kmeans/input_%d.txt" , 10 , "output/result_%d.txt" , r e s u l t) ;

// print prediction time cost.

p r i n t f ("%.3fs elapsed.\n" , r e s u l t . t imee lapsed) ;

Take KMeans as an example to show how to parellelize a machine learning algorithm

using the idea of MapReduce.

4

We are going to share some information, i.e. the cluster centroids, across iterations. They

are saved in a file on AFS which is accessible to all workers. It at first contains the initial

K cluster centroids (or K random data samples) and will be updated after each iteration to

contain the latest centroids calculated by Reducer.

For training, we just need to derive this file. So after initialization,

a. The Mapper reads this file to get the centroids from last iteration. It then reads the input

data and calculates the Euclidean distance to each centroid. It associates each instance

with the closest centroid, and outputs (data instance id, cluster id).

b. To compress the size of partial result, we use a Combiner to calculates the average of the

data instances for each cluster, along with the number of instances. It outputs (cluster

id, (intermediate cluster centroid, number of instances)).

c. The Reducer calculates the weighted average of the intermediate centroids, and outputs

(cluster id, cluster centroid) into the file.

For predicting, we need to associate each data sample with the closest centroid.

a. The Mapper reads the centroid file as well as the input data, and then calculates the

Euclidean distance to each centroid. It associates each data sample with the closest

centroid, and outputs (data instance id, cluster id).

b. The Reducer just directly output the input pairs.

Assume there are N data samples with dimension d and K clusters, and training process

needs t iterations. Then the time complexity is O(NKdt). In MapReduce, if there are m

mappers and r reducers, the complexity is O((N
m

+ m
r

)Kdt+S) where S stands for scheduling

overhead and is related to the number of mappers and reducers. It shows that the speedup

is less than m, but it should be close to m if S,m, r are relatively small.

4 Results

4.1 Results for Different Algorithms

4.1.1 K-Means

The experiment setting is shown in 1. The performance of K-Means on GHC Cluster is

shown in 4. The base line is the 4 mappers version of the algorithm. The graph show that

the algorithm scales well when the number of mappers is low(the time used by reducer is

less than 1 second, thus it is ignored in discussion). However, as the number of mappers

increase, the overhead of network communication overweight the number of mappers, thus

the performance does not scale well.

5

Experiment Setting Value

Dataset US Census 1990

Platform GHC Cluster

CPU Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20GHz

Data Size 2458285

#Nodes 8

#Iterations 20

Table 1: K-Means Experiment Setting

384.859

211.165

109.306

72.597 64.059

#Mappers

Ti
m
s(
s)

0

100

200

300

400

500

10 20 30 40

Figure 4: K-Means Performance

Experiment Setting Value

Dataset Diabete Dataset

#Data 3686400

#Dimension 39177

Platform GHC Cluster

CPU Inter Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20GHz

Table 2: Linear Regression Experiment Setting

6

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes

45.85

25.523

18.669

13.59

44.414

24.614

12.076

6.573

#Mappers

Ti
m

e(
s)

0

20

40

60

2 4 6 8

Total Time Computation Time

Figure 5: Linear Regression Performance

4.1.2 Linear Regression

The experiment setting is shown in 2. The performance of Linear Regression on GHC

Cluster is shown in 5. The base line is the 1 mappers version of the algorithm. The graph

show that the computation time scales well(The computation time of reducer is less than

1 second, thus it is ignored in the graph). However, the total time of the algorithm is not

ideal. One of the reason is that the framework assign mapper and reducer sequentially. Thus

when the number of mappers and reducers increase, the overhead of assignment increase as

well. Since the linear regression implemented in this project is a 1-Pass closed-form linear

regression algorithm, the assignment of mappers and reducer overweight the computation

when its number increase.

4.1.3 Logistic Regression

Experiment Setting Value

Dataset Movie Review Dataset

#Data 2300

#Dimension 39177

Platform Personal Computer

CPU Intel i5-8259u

Table 3: Logistic Regression Experiment Setting

7

74.541

44.239

35.223
31.265

#Mappers

Ti
m
e(
s)

0

25

50

75

100

1 2 3 4

Figure 6: Logistic Regression Performance

The experiment setting is shown in 3. The performance of Logistic Regression is shown in

6. The base line is the 1 mappers version of the algorithm. The graph show that the algorithm

scales well when the number of mappers is low(the time used by reducer is less than 1 second,

thus it is ignored in discussion). However, as the number of mappers increase, the overhead

of network communication overweight the number of mappers, thus the performance does

not scale well.

4.2 Analysis for K-Means

K-Means is chosen in this part because it is a multi-iteration algorithm. Although the over-

head of mappers and reducers assignment increase as the number of mappers and reducers

increase, it can be amortized as the number of iterations increase, thus it can shown more

details about the algorithm.

4.2.1 Number of Tasks

The experiment setting is shown in 4. The performance different number of task is shown

in 7. The graph shows that the overhead of getting new tasks from the work queue is about

10% of the total run time. However, as the number of tasks increase, the performance is

slightly improved. The log of the algorithms show that as the number of tasks increase, some

of the mappers tend to execute more tasks. In other word, more tasks give better work-load

balance. In this experiment, the input file is partitioned evenly. In real word applications, it

is highly possible that the input files have different size. The dynamic schedule of mappers

and reducers are able to ipmrove the performance in this situation.

8

Experiment Setting Value

Dataset US Census 1990

Platform GHC Cluster

Data Size 2458285

#Mappers 16

#Iterations 20

Table 4: Different #Tasks Experiment Setting

109.306

120.158

123.852
122.965

121.632

#Tasks

Ti
m
e(
s)

105

110

115

120

125

130

20 40 60 80

Figure 7: K-Means Performance with Different #Tasks

9

4.2.2 Number of Nodes

Experiment Setting Value

Dataset US Census 1990

Platform GHC Cluster

Data Size 2458285

#Mappers 16

#Iterations 20

Table 5: Different #Nodes Experiment Setting

113.257

109.306

115.45

130.591

#Mappers/Node

Ti
m
e(
s)

100

110

120

130

140

2 4 6 8

Figure 8: K-Means Performance with Different #Mappers/Node

The experiment setting is shown in table 5. The performance different number of task

is shown in 8. The reason why the performance of 8 mappers per node is not ideal is

that the CPU have 8 cores. The design of the framework is a multi-thread system. In

addition to worker thread which works on the tasks, there are background thread for network

communication. For this reason, the mappers are influenced by the system schedule, and

the performance is not ideal.

4.2.3 Data Size

The experiment setting is shown in 6. The performance different data size is shown in 9. It

is shown in the graph that when the problem size is large enough, the framework is easy to

scale.

10

Experiment Setting Value

Dataset US Census 1990

Platform GHC Cluster

#Mappers 16

#Iterations 20

Table 6: Different Data Size Experiment Setting

109.306

60.761

33.931

22.789
15.099

Data Size

Ti
m

e(
s)

0

25

50

75

100

125

200000

400000

600000

800000

1000000

2000000

Figure 9: K-Means Performance with Different Data Size

11

4.3 Result Conclusion

The result of the experiment shows the following features and issues of the framework.

Features:

• Scalability: The applications can be easily implemented on multi-node system, and the

scalability of the application is ideal when the problem size is large enough.

• Dynamic Scheduling: The framework support dynamic scheduling for mappers and

reducers. When the input files are not partitioned evenly, this feature can improve the

work-load balance of the system.

• Connection Reuse: After the connections between master and workers are set, different

rounds of MapReduce will reuse these connections to avoid starting overhead.

Issues:

• Starting Overhead: For application with few iterations, the overhead of workers as-

signment would overweigh the benefit of more workers. It is possible to execute the

assignment command in parallel to fix this issue.

• Critical Section: When mappers or reducers send finishing message to master, there is

a critical section in master to protect the job queue and finishing counter, which must

be done sequentially and may limit the scalability.

• CPU Consumption: In order to perform efficient communication, the libevent library

needs to maintain background thread for messages. This overhead is unavoidable for

the framework, and it is a trade-off between scalability and performance.

5 Special Thanks

We are inspired by several great projects.

• libevent, an event notification library. https://libevent.org

• libssh, an SSH client library. https://www.libssh.org

• mapreduce-lite, a C++ implementation of MapReduce. https://github.com/wangkuiyi/

mapreduce-lite

12

https://libevent.org
https://www.libssh.org
https://github.com/wangkuiyi/mapreduce-lite
https://github.com/wangkuiyi/mapreduce-lite

References

[1] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM, 2008.

[2] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng and K. Olukotun. Map-reduce for

machine learning on multicore. Proceedings of the 19th International Conference on

Neural Information Processing Systems, 2006.

[3] M. Bodoia. MapReduce Algorithms for k-means Clustering. CME 323: Distributed

Algorithms and Optimization, Stanford. 2016

[4] W. Cohen. Naive Bayes and Map-Reduce. 2017

13

	Summary
	Background
	Approach
	Workflow
	Network Communication
	MapReduce Version of Machine Learning Algorithms

	Results
	Results for Different Algorithms
	K-Means
	Linear Regression
	Logistic Regression

	Analysis for K-Means
	Number of Tasks
	Number of Nodes
	Data Size

	Result Conclusion

	Special Thanks

